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ABSTRACT 
Design research is important for understanding and interrogat-
ing how emerging technologies shape human experience. How-
ever, design research with Machine Learning (ML) is relatively 
underdeveloped. Crucially, designers have not found a grasp on ML 
uncertainty as a design opportunity rather than an obstacle. The 
technical literature points to data and model uncertainties as two 
main properties of ML. Through post-phenomenology, we posi-
tion uncertainty as one defning material attribute of ML processes 
which mediate human experience. To understand ML uncertainty 
as a design material, we investigate four design research case stud-
ies involving ML. We derive three provocative concepts: thingly
uncertainty: ML-driven artefacts have uncertain, variable relations
to their environments; pattern leakage: ML uncertainty can lead
to patterns shaping the world they are meant to represent; and 
futures creep: ML technologies texture human relations to time with
uncertainty. Finally, we outline design research trajectories and 
sketch a post-phenomenological approach to human-ML relations. 

CCS CONCEPTS 
• Human-centered computing → HCI theory, concepts and
models.
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1 INTRODUCTION 
Just as prior advances in computing technology have led to design 
researchers approaching algorithms, software interfaces, sensors, 
and actuators as design materials [44, 60], similar developments are
happening with Machine Learning (ML) technologies (cf. [10, 27, 
41, 80]). Recent advances in this regard have resulted in guidelines 
from computing corporations for curating ML results, improving 
user experience design and Explainable Artifcial Intelligence (XAI) 
(e.g., [2, 19, 43, 81]). In light of the increasing ubiquity and technical 
opacity of ML, design research methodologies such as Research-
through-Design, Speculative Design or Design Fiction are urgently 
needed in this space to develop better tools grounded in a rich and 
socially-situated understanding of how ML shapes everyday life. 

We argue that design research is well-posed to describe, explore 
and refect on how the “statistical intelligence” [10] of ML decision-
making bleeds into the intimate human experience of lifeworlds; 
and to productively engage with emerging personal, societal and 
ethical issues. At the same time, we observe that design research 
struggles to engage ML as a material for design, as the probabilis-
tic inference of models from data patterns withdraws from being 
present-at-hand. A major focus of prior work is the technical opacity 
of ML. However, just as ML-driven systems are difcult to interpret 
and exhibit emergent and oftentimes unpredictable behavior [8], the 
outputs they generate are inherently characterized by uncertainty 
from data noise and model variance [35]. 

ML uncertainty is a problem for HCI design research, because 
the feld has not yet framed it as a design material to assess, design, 
and refect novel applications, objects and services that build on ML. 
On the contrary, prior work, for example in the area of XAI, is often 
concerned with using design methods to explain, rather than utilize, 
ML uncertainty. We propose that approaching ML uncertainty as a 
specifc material property of ML can help design research consider 
novel spaces for design intervention and interaction. 

In this paper, we investigate ML uncertainty from a post-pheno-
menological perspective to develop a conceptual vocabulary for 
engaging ML uncertainty in designerly ways. The principal argu-
ment of post-phenomenology is that technologies actively mediate
human relations to the world [33]: technologies are neither com-
pletely deterministic (technological determinism) but neither are 
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they neutral tools (technological instrumentalism). Instead, human-
technology relations are co-constitutive, with artefacts shaping 
how humans as specifc subjectivities relate to the world [67]. In 
this view, design is doing philosophy “by other means” [69], and 
design materials are those involved in shaping technological me-
diation. We follow Hauser et al.’s framing of Research-through-
Design (RtD) as post-phenomenological practice [25], and expand 
this view to further design research methodologies and the specifc 
topic of ML. We thereby also continue prior work from the HCI 
community on using and extending the post-phenomenological 
framework (cf. [26, 58, 72]). Specifcally, we investigate four design 
research case studies using a post-phenomenological lens, and de-
velop provocative concepts for ML uncertainty similar to “strong 
concepts” [32] or robust “annotations” [14, 25] in HCI. In this, we 
take a modest step forward in making ML uncertainty tangible as a 
design material for HCI design researchers. We argue that uncer-
tainty is the material expression (cf. [60]) of ML decision-making. 
While there are reasonable engineering incentives to minimize un-
certainty in many use cases, uncertainty constitutes a fundamental 
attribute of any ML-driven system. Uncertainty ofers a represen-
tation of the ‘fault lines’ of ML decision-making, not only as a 
negative attribute of solutions but as simply part-and-parcel of ML 
technologies. As such, designerly making with uncertainty ofers 
an opportunity to design artefacts and scenarios that attribute or 
more fully exploit the characteristics of ML decision-making. Our 
contributions consist of provocative, conceptual shorthands for ML 
uncertainty. We encourage designers to not see ML uncertainty 
as “to be explained away,” but rather as generative of particular 
relations that can be designed for. At the same time, we also show 
how emerging ML applications are not readily accounted for with 
prior human-technology relation concepts. 

We provide three provocative concepts that build on ML uncer-
tainty as a source for future research in HCI, design research and 
philosophy of technology communities. As a general concept, we 
propose thingly uncertainty to capture the capacity of ML-driven 
artefacts to be uncertain about the world, and thereby generating 
and adapting to a wide continuum of relations to other things, their 
datafed environment and people. We furthermore distinguish two 
specifc concepts. First, we propose pattern leakage for describing 
how ML models become generative of patterns which enter and al-
ter the everyday. Pattern leakage describes how ML models alter the 
world they seek to represent. Second, we propose futures creep to 
denote the often subtle transformations of the present by ML predic-
tions; changing human relations to time by injecting probabilistic 
events such as climate change predictions into the direct perception 
of the present. Based on our derived concepts, we propose how 
design research can engage with ML uncertainty, and furthermore 
suggest horizonal relations as a post-phenomenological research 
trajectory into the specifcs of how ML capacities and human ex-
perience co-extend and overlap. Among the contributions of this 
paper, we (1) construct a post-phenomenological lens on ML based 
on related work; (2) analyze four case studies from diferent design 
research methodologies through this lens to discern ML uncertainty 
as a design material; (3) present thingly uncertainty, pattern leakage 
and futures creep as provocative concepts for future work; and (4) 
propose horizonal relations as a distinct human-technology relation, 
and lay out research trajectories for investigation. 

2 BACKGROUND 
In the following section we (1) provide a brief introduction to ML 
uncertainty; (2) frame how design research can pragmatically and 
critically engage with emerging technologies; (3) argue that post-
phenomenology is a promising lens to make ML uncertainty gras-
pable in design research. 

2.1 ML Technologies between Opacity, 
Interpretability and Uncertainty 

Many of the diverse algorithmic techniques common in ML today 
stem from cybernetics. McCulloch and Pitt’s notion of neuronal 
activity [49] and Rosenblatt’s Perceptron as a probabilistic model for 
learning and remembering information about the environment [63] 
are in direct connection to today’s advances in deep learning, while 
Wiener’s concept of negative feedback [74] can still be seen as the 
general principle which make ostensibly novel technologies tick. 
And like cybernetics, today’s ML technologies are reliant on prob-
abilistic techniques as a computational means for the “taming of 
chance” [20]. The deployment of increasingly powerful probabilis-
tic techniques (e.g., expectation-maximization, gradient descent, 
backpropagation) capable of adapting models to large datasets in 
real-world settings has also come at the cost of opacity, and be-
come generative of types of uncertainty originating from within 
technological deployments themselves. 

In general, ML algorithms operate according to the principle 
of “insight through opacity” [50], using specifc probabilistic tech-
niques to infer a model that describes statistical patterns in datasets 
[6], which approximates some assumed real-world functional rela-
tionship [18]. The insight, i.e. a model that can detect signifcant 
patterns in relevant data (e.g., does this image show tumors?), de-
pends on opacity: as each variable such as a pixel is computed as a 
vector in relation to all other variables, the combined dimensional-
ity of vectors exceeds those that humans can intuit. In short, the 
often “unreasonable efectiveness” [21] of current ML implementa-
tions comes at the cost of understanding how exactly insights were 
arrived at. From within ML research, the challenge of opacity is 
one of the most urgent topics of research, showing in felds such as 
XAI or ML interpretability research. A common approach for ML 
research is to deploy algorithmic methods, so-called interpretability 
techniques [45, 53], to extract information from ML pipelines in 
order to explain outputs via textual or visual explanations. While 
this research area is fundamentally oriented at experts, its focus on 
actual ML technologies ofers up a catalogue of properties poten-
tially of interest to design research. Given ML’s epistemological as 
well as technical origins in cybernetics, we are specifcally inter-
ested in how uncertainty is dealt with in light of the contemporary 
insight-through-opacity approach. 

In ML research, the aim of dealing with uncertainty takes on a 
distinctly material grounding: given the reliance on probabilistic 
techniques, uncertainty is not only a human disposition but part 
and parcel of ML technologies. ML researchers frequently distin-
guish between two types of uncertainty which are related to data 
(both training and input) and models respectively [12, 35, 37]. The 
former, “aleatoric” uncertainty, can be framed as ‘noise’: incoming 
signals in training or real-world deployments are inevitably im-
pure and may afect the performance of ML algorithms. The latter, 
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“epistemic” uncertainty, refers to the complex questions surround-
ing the ‘ft’ of a generated ML model. Inferred models embody, 
frstly, only one way of describing patterns from a given dataset, 
and given the insight-through-opacity approach the relationship 
to unknown models is uncertain. Secondly, an inferred model may 
also generate additional uncertainty when deployed “out-of-data”, 
i.e. in settings diferent to training environments. Data and model 
uncertainty frequently feature in ML interpretability research. It is 
important to note that both are computable depending on the given 
ML deployment. Hohman et al., for example, deploy a technology 
probe for ML experts featuring various data visualizations in one 
interface, which includes a “regions-of-error” technique showing 
the model uncertainty of predictions [30]. Similarly, Kinkeldey et 
al. use a landscape metaphor in a cluster visualization, indicating 
through a grey-scale topography how certain the clustering model 
is about the membership of each individual point by their location 
in “peaks or slopes” [36]. Concerning data uncertainty, Kendall and 
Gal note that in image segmentation using deep learning, noise 
afects the boundaries surrounding objects [35]. Similarly, Kwon et 
al. note that data uncertainty in brain lesion detection with neural 
networks manifests around afected brain regions [39]. 

On a general level, we therefore consider data uncertainty to 
manifest with the objects of ML decision-making (e.g., data as im-
ages, strings, vectors), whereas model uncertainty concerns the 
mode of ML decision-making (e.g., clustering, classifying, predict-
ing). While the technical felds take an understandably solutionist 
stance on ML uncertainty by attempting to either minimize or ex-
plain it, we argue that the notion of computational uncertainty 
as a part-and-parcel property of ML promises opening actual ML 
technologies to designerly research. 

2.2 Design Research in ML and Emerging 
Technologies 

Uncertainty, understood in an everyday sense as ambiguity or 
chance, is a well-known resource in design research (cf. [15]). As 
an alternative to quantitative studies, design research focuses on 
unearthing, exploring and understanding individual and situated 
encounters of people with technology that are often based on un-
certainty and indeterminacy. Particularly ‘third-wave HCI’ [24] 
methodologies such as Research-through-Design, Design Fiction 
or Speculative Design have engaged this trajectory, foregrounding 
how technological artefacts are not merely solutions to discrete 
problems but rather embody open-ended, contextually dependent 
questions. Yet, design research has predominantly focused on either 
using ML for design, or using design for ML. With regards to the 
former, for example, Yang et al. have discussed how ML is engaged 
by design practitioners and researchers [80–82] to improve user 
experience through adaptation or personalization. They found that 
while practitioners and researchers are enthusiastic about using 
ML, design research so far lacks distinct methods that engage ML 
as a design material. Similarly, Dove et al., conclude that integrative 
prototyping methods refecting both “ML statistical intelligence 
and human common sense intelligence” [10] are missing in the feld. 
However, in contrast to this research focus on ML for design, we ar-
gue that more fundamental research is needed into how, and to what 
end, ML technologies can be a design material in their own right. 

Similarly, in HCI approaches to XAI, researchers envision design 
research methods for improving a given system’s explainability; by 
e.g. developing explainability scenarios [3, 76] or conceptualizing 
contextually sensitive questions [43, 73] for various stakeholders. 
We see a similar, if inverted, limitation in this use of design for ML: 
in XAI, ML technologies tend to become the target (for e.g. design-
ing explanations), not the material, of design research methods. 
We therefore next consider critical design research projects that, 
while not always directly addressing ML technologies, deal with 
uncertainties of complex design materials. 

For example, Merrill et al. found that lay people believe diferent 
types of biosensors can reveal much more, or much less, than they 
actually can [52]. Others have explored how people speculate on 
smart things for the home, based on the fuidity and diversity of 
the values they attribute to their individual homes. This unraveled 
the idiosyncrasies and situatedness of potential future smart things, 
and highlights that these are bound to individual experiences with 
uncertainty [4, 56]. Pierce’s design-led inquiry into smart camera 
systems [58] investigates the ways in which smart camera systems 
opaquely embody specifc relations to the world–that is, functions 
which may be concealed due to undesired efects (e.g., distrust, fail-
ure). Redström and Wiltse further interrogate how user interactions 
are tied to infrastructural functions, and outline how “surface-level 
simplicity” of interactions such as pressing play in Spotify belie 
“dynamic, sophisticated, and hidden backend complexity” [61]. 

This brief overview of critical design research projects shows 
that in general, situated yet concealed design materials are nothing 
new, and opacity and its often uncertain efects are a recurring 
theme across application areas. However, we observe that few criti-
cal design research projects deal with specifc rather than generic 
ML technologies. We hypothesize that design research currently 
lacks a conceptual grasp on material properties that characterize ML 
technologies’ inference of models from data and decision-making 
(e.g., prediction, classifcation). Due to their relationship with input, 
inference and output of ML technologies, we propose that com-
putational model and data uncertainty from the technical felds 
discussed above are promising candidates. That is, rather than a 
human-centered notion of uncertainty, we propose that the tech-
nical framing of uncertainty promises a stronger foothold on the 
ML design space. However, it is unclear how ML uncertainty can 
be framed specifcally for design research. For example, Hemmentt 
et al. call for artistic, designerly practices of revealing the “distor-
tions in the ways in which algorithms make sense of the world” 
[29]; yet do not outline how this may relate to existing design re-
search methodologies as well as actual ML technologies. In the 
following, we discuss how the philosophical framework of post-
phenomenology ofers a starting point to expand on this gap. 

2.3 Post-Phenomenology and Sketching 
Human-ML Relations 

Post-phenomenology is an empirical-analytical framework in phi-
losophy of technology. In this view, technological artefacts shape hu-
man perception and action by mediating the world in specifc ways 
[33]. The framework has become particularly infuential in HCI 
design research, as it foregrounds the responsibilities and ethico-
political stakes of designing technological artefacts—-surfacing how 
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technologies co-constitute our relations to specifc ‘slices’ of the 
world, and how this relation makes us who we are [13, 25, 69]. 

Below, we outline established concepts of post-phenomenology 
in the form of their basic relational schemata, which allow empirical-
analytical research to probe their objects of study for the roles that 
human, technology and world play. 

The schemata use established notations for simple connections 
between entities (-); interpretation of one by the other (→); being 
experienced together (()); being in the background (/) of another 
entity; or being already thematized (i.e., meaningfully focused [28]) 
in some way ([]) before being experienced. We then argue that 
post-phenomenology is a well-suited framework to describe, ana-
lyze, and interpret ML as a technology with active yet concealed 
relations to the world. 

2.3.1 Technological Mediation: Human ways of perceiving and act-
ing in the world are shaped by technological artefacts, co-constitu-
ting who relates to what/whom in which way. Depending on the 
technology (e.g., an ultrasound scanner), ways of perceiving phe-
nomena in the world are shaped (e.g., the fetus-as-patient, the 
womb-as-potentially-dangerous-enclosure), and actions are invited 
or inhibited (e.g., decisions on fetal care), for a specifc human subjec-
tivity (e.g., the non-pregnant parent-as-caretaker) [67]. The general 
schema for technological mediation is: 

Human -- Technology -- World 

2.3.2 Human-Technology Relations: Post-phenomenology studies 
technological mediation through human-technology relations (Ta-
ble 1), the structures of the empirical settings in which humans and 
technologies encounter each other, and how such encounters shape 
how humans relate to the world [62]. 

Ihde initially proposed four types of human-technology relations 
[33]. In embodiment relations, technologies become an insepara-
ble part of human bodily-perceptual experience. Wearing glasses 
shapes our experience of the world, not of the glasses themselves. 
In hermeneutic relations, technologies make the world legible in a 
specifc way. Reading a map mediates the world as a grid; a ther-
mometer translates heat phenomena onto a legible scale. More overt, 
in alterity relations technologies are seen as a quasi-Other. For ex-
ample, an ATM, toy or robot are interacted with as if they have 
human-like intentions. In background relations, technologies merge 
with the background of experience, yet “texture” (i.e., generate an 
atmosphere for) that experience. Central heating or thermostats 
are absent presences in the experience of our home, but are rarely 
interacted with directly. Verbeek further expanded these relations 
to refect the more subtle and also radical mediation by emerg-
ing technologies. In immersion relations, for instance, technologies 
such as augmented reality glasses or ambient intelligences merge 
with the environment, shaping how social relations can be enacted 
within them [70]. More radically, in cyborg relations, technologies 
such as microchips or pacemakers merge with the body, becoming 
indistinguishable in direct experience [68]. And lastly, in composite 
relations, technologies such as extremely long-exposure photog-
raphy or computational imaging make things experienceable that 
have no direct correlation to ordinary human modes of perceiving 
space and time. Instead, composite relations mediate a “reality that 
can only be experienced by technologies” [68]. 

Relation Schema Examples 
Embodiment (I-Technology)World Glasses, Cane 
Hermeneutic I → (Technology - World) Thermometers, Maps 
Alterity I → Technology (- World) ATMs, Robots 
Background I (- Technology/World) Heating, Thermostat 
Immersion I ↔ Technology/World Virtual/Augmented Reality 
Cyborg (I/Technology) ↔ World Implants, Pacemakers 
Composite I → (Technology → World) Computational Imaging 

Table 1: Human-technology relations defned by Ihde and 
Verbeek, with associated schemata and examples. 

2.3.3 Sketch for Human-ML Relations: In all the above human-
technology relations, post-phenomenology attributes intentionality 
to technological artefacts, a material ‘directedness’ that these arte-
facts exhibit in relating to the world [67]: through intentionality, 
such as the thermometer’s combination of quicksilver and a scale, 
specifc aspects of the world become legible in a specifc way (e.g., 
‘reading’ temperature). ML processes of inferring models from pat-
terns found in data arguably strongly evidence this characteristic. 
At the same time, ML processes occur outside the phenomenological 
“horizon” of experience [33] in everyday life: we engage newsfeed-
interfaces as technological artefacts, not the ML sorting algorithms. 
This leads us to two considerations for grasping human-ML rela-
tions post-phenomenologically. First, ML technologies shape our 
perception of the world via artefacts (e.g. devices and interfaces) 
which display, or are composed according to, their outputs. Second, 
outputs are not pre-confgured, but depend on how data patterns 
and the parameters of the specifc ML algorithm converge in a 
model. Accordingly, though the “model-world relations” [22] of 
ML algorithm and data afect how we experience the world, they 
do so in a way that is not directly empirically present. Given the 
established post-phenomenological concepts of texturing from the 
background of experience, thematization and the schema of compos-
ite relations, we can sketch a preliminary schema for technological 
mediation in human-ML relations as follows: 

Human - Technology / (Model → [World]) - World 

This schema represents how an ML model, though active in 
the background of technological artefacts (/) that we experience 
within our phenomenological horizon, nevertheless textures that 
experience through its interpretive (→), data-driven ([]) relations 
with the world. It can thus serve similar to the general schema of 
human-technology-world relations shown above in describing the 
technological mediation of ML. However, this schema alone does 
not yet provide concrete guidance on how precisely design research 
methodologies may gain a frmer grasp on ML through uncertainty, 
or whether there are particular human-technology relations beyond 
those in Table 1. So far, all it does is indicate that design researchers 
may probe or actively pursue ML outputs for higher variance (e.g., 
more or less uncertain), but not whether there may be ML-specifc 
phenomena which should be paid special attention to. This forms 
our rationale for conducting an investigation of design research 
projects that engage ML technologies, as such an investigation will 
point to specifc phenomena which then also feed back into our 
preliminary schema. 
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Case Study Methodology ML Technology Context Design Output 
Pierce’s Shifting Lines of Creepiness [58] Research-Through-Design Image Recognition Corporate / Home Artefact Scenarios 
Wong et al.’s When BCIs have APIs [79] Design Fiction Classifcation Corporate / Labor Infrastructure Scenarios 
Wakkary et al.’s Morse Things [72] Material Speculation Reinforcement Learning Home Counterfactual Artefact 
Biggs and Desjardins’ Highwater Pants [5] Speculative Design Linear Regression Climate Futures Speculative Artefact 

Table 2: An overview of the selected design research projects as case studies for our analyses. 

3 METHODOLOGICAL APPROACH 
In this section we describe our rationale for selecting our case stud-
ies, and how we use them to frame ML uncertainty as a design mate-
rial through post-phenomenological analyses. Post-phenomenology 
considers design as a practice of shaping technological mediation, 
as a way of doing philosophy “by other means” [69]. We build 
our approach on Hauser et al.’s work on the relationship between 
Research-through-Design in HCI and post-phenomenology [25], 
outlining the former as an experimental variant of the “interpretive 
empiricism” of the latter. 

The hypothesis for our approach is twofold. Firstly, design 
research unfolds and shapes specifc relations between humans 
and the world by designing technological artefacts. Secondly, as 
philosophy-in-practice, design research may hold latent proposi-
tions on how to think ML uncertainty in a post-phenomenological, 
designerly way. Therefore, the goal of the remainder of this paper is 
to use post-phenomenology to explicate and conceptualize the role 
of ML uncertainty in specifc design research projects involving 
ML technologies. 

3.1 Case Study Selection 
Our selected case studies are design research projects from diverse 
methodological strands and application domains, to refect both 
research and real-world concerns relating to ML technologies. We 
frst gathered potential case studies from the corpus of CHI and 
DIS from 2015 to 2020. For the fnal selection, all authors met and 
discussed candidates (which also included e.g. [31, 40, 51]). We were 
especially interested in investigating a selection of case studies 
with a methodological, technological, contextual and designerly 
diversity. The presented case studies (cf. Table 2) were selected to 
cover a wide range of human-technology relations with diferent 
ML applications, while at the same time representing the diversity 
of HCI design research methodologies and contexts. 

This diversity covers a wide spectrum of established human-
technology relations (cf. Table 1), ofering an empirical-analytical 
grounding to our own analysis (cf. [25]). Specifcally, we selected 
Pierce’s design-led inquiry into smart home security cameras to 
refect issues of leaking surveillance in the home [58], Wong et 
al.’s design fction on Brain-Computer Interfaces (BCI) to refect 
infrastructural relations [77], Wakkary et al.’s material speculation 
into more-than-human design of artefacts [72]; and Biggs and Des-
jardins’ speculative design of artefacts for relating to climate change 
predictions [5]. Our case study selection enables us to consider how, 
within the case studies, ML uncertainty becomes an explicit or im-
plicit facet in the process of the designerly shaping of technological 
mediation, and thereby how people relate to the world. 

3.2 Analytic Procedure 
Analyses were led by the frst author in an iterative process, sub-
sequent to the selection of case studies. Our high-level analytic 
process begins with human-technology relations articulated in the 
work of Ihde and Verbeek, and cited and extended within HCI by 
e.g. [26, 58, 72]. We focus on the human-technology relations given 
through each case’s design output (e.g., artefact, scenario) and con-
text (e.g., home), and then expand to the particular ML technology 
employed in the case studies to reconsider how the former are af-
fected. We do so through our initial theoretical schema for human-
ML relations (cf. subsection 2.3). In our analyses, we search for 
designerly “intermediate-level knowledge” [32] that ties in human-
technology and model-world relations; which also allows us to 
investigate in how far established post-phenomenological notions 
can be advanced. By analyzing the entanglement of the specifc ML 
technology (e.g., goal-driven reinforcement learning) with the given 
human-technology relation (e.g., embodiment relation), we discern 
phenomena unaddressed within the design research projects them-
selves. We then generalize these phenomena under provocative 
concepts, which we propose be used in design processes to engage 
ML uncertainty as a design material. 

4 ML UNCERTAINTY AS A DESIGN 
MATERIAL: FOUR ANALYSES 

In the following, we investigate four case studies from distinct 
design research methodologies and unfold phenomena and research 
questions related to ML uncertainty as a design material. 

4.1 Pierce’s Shifing Lines of Creepiness 
4.1.1 Description. Pierce undertakes a Research-through-Design 
(RtD) inquiry into smart camera systems, focusing on notions of 
‘creepiness’ so as to interrogate how design artefacts navigate 
creepiness and acceptability [58] of smart cameras in the home. 
Pierce investigates through RtD how smart home cameras may 
opaquely or involuntarily “leak data” into system ecologies; house 
more directly opaque “hole-and-corner” applications that exploit 
data; and lay the groundwork for future smart services by acting 
as a “foot-in-the-door.” Pierce proposes speculative design scenar-
ios which transpose the described phenomena into future appli-
cation domains. The artefacts, smart home security cameras, are 
predominantly driven by ML image recognition algorithms, such 
as Convolutional Neural Nets or deep learning variants (e.g., [54]). 
Pierce’s design considerations construct specifc human-technology 
relations, which we now probe for the (implicit or explicit) presence 
of ML uncertainty. 
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4.1.2 Analysis. We focus specifcally on the notion of ‘data leakage’ 
in Pierce’s framing, as it is most distinctly tied to the physical 
artefact of the camera and the ML algorithm. Depending on how 
the camera is oriented, recognized objects and people can become 
processed as data unbeknownst to or without the explicit intention 
of the owner of the smart camera (e.g., the neighbor’s visitor). This 
implies one of Ihde’s established human-technology relations, a 
background relation: 

I ( - Camera / Home) 
Background Relation 

In this human-technology relation, the home is shaped as 
a distinct zone-of-observation, and humans or animals become 
detections-in-waiting. However, Pierce is explicitly concerned with 
the agential capacities of smart cameras, i.e. the capacity of ML 
recognition models to extract patterns from incoming data. The 
smart camera is less passive than heating appliances or a ther-
mostat, it has a dynamic relation to the surrounding world in its 
interpretation of incoming data. Therefore, we add this capacity as 
a distinctly composite, but non-experiential side to the background 
relation: 

I ( - Camera / (Recognition → World) / Home) 
Composite Background Relation 

Yet, this does not quite cover what an ML algorithm within a 
smart camera does. Crucially, it is inferred from a particular relation-
ship between patterns of pixels, e.g. the presence of patterns x and 
y in an input image indicates the detection of person-is-entering-a-
camera-frame (in non-conceptual terms, the model does not ‘know’ 
this). As these relationships between patterns are learned from data, 
the relation can be refned by saying that the ‘world’ which the 
smart camera relates to is already technologically thematized to a 
certain extent: there’s a propensity to recognize specifc things in 
the world, which we indicate with square brackets ([]). 

I ( - Camera / (Recognition → [World]) / Home) 
Composite Background Relation 

This notation now brings the specifcs of ML in the smart camera 
home security system to the fore: it is not only the camera’s physical 
lurking which textures people’s experience of the home. Like a 
thermostat, people are not constantly aware of the camera, and 
also like a thermostat, sometimes people are, through notifcations 
or alarms. Yet, people do not have explicit access to the layer of 
texturing constituted by the direction (i.e., intentionality) of the 
model towards latent recognitions in every frame. Depending on the 
trained model, some patterns are more probable to be recognized: 
it is not only data that leaks from the outside-in, as Pierce’s data 
leakage covers, but furthermore patterns that leak from the inside-
out (cf. Figure 1). That means, the ML model active within the smart 
camera has been trained to recognize faces of people within its feld 
of view. It is not capable to distinguish the neighbor’s porch from 
the porch of its owner. As such, there is a likelihood that a person 
on the neighbors porch or even a portrait on a delivery truck decal 
are categorized as a person, depending on how the ML model is 
inferred. 

This is where we fnd a frst manifestation of ML uncertainty as 
a design material: patterns that leak are also always probabilistic, 
e.g., there’s an inherent variance in the detection due to model 
uncertainty. Kendall and Gal note that in their deep learning image 

register
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update
pattern

apply pattern

Convolutional 
Neural Network

Figure 1: ML uncertainty may not only lead to data leaking 
from the outside-in, but paterns leaking from the inside-out. 
Camera Illustration © Pierce [58] 

segmentation use case, model uncertainty leads to footpaths be-
coming part of roads [35]. This kind of model uncertainty suggests 
that ML recognition through smart cameras may generate phenom-
ena, rather than merely register them: when ML-driven artefacts 
recognize or process observations, model uncertainties can lead to 
patterns being projected into the world, which in turn may solidify 
the propensity for that pattern to be recognized. Or, falsely associ-
ated patterns may lead to new entities becoming signifcant. While 
Pierce proposes speculative artefacts to counteract data leakage, we 
consider the phenomena of pattern leakage as a prompt for design 
research to actively, productively, and also critically engage with. 
Possible research questions for design research into smart camera 
pattern leakage may be the following: what novel hybrid entities, 
such as detections compressing human bodies and suburban sur-
roundings, could become ‘self-evident’ through ML feedback loops? 
What unforeseen consequences could such uncertain entities have? 
In what way may they have an efect on end-users? If pattern leak-
age leads to smart camera patterns that leak from the inside out 
into the world in a way either nonsensical or odd to humans, what 
type of domains, products, services could embrace such an uncer-
tain mode of access to the world? Future design research could 
therefore specifcally design for pattern leakage as an exemplary 
phenomenon of the “ontological surprises” [41] of ML, for exam-
ple, by engaging in “ludic design” [16] of artefacts interpreting the 
world by allowing for or exaggerating model uncertainty. 

4.2 Wong et al.’s When BCIs have APIs 
4.2.1 Description. In their design fction on brain-computer inter-
face (BCI) applications, Wong et al. speculate about the creation 
of an API for a Google service which lets developers tap into the 
reading of P300 occurrences in brainwaves. These P300 readings 
indicate recognition by measuring spikes in brainwave activity, 
which can be used for e.g. character recognition for input devices. 
Wong et al. employ design fction to surface new forms of labor and 
asymmetries such technologies may engender [79]. Additionally, 
the researchers also outline distinct human-technology relations 
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which allow us to probe the surfacing of ML uncertainty. Wong et 
al. design their fctional API on the basis that the algorithm used 
to infer the P300 signal was trained on “lab-based stimuli from a 
controlled environment;” which is representative of various real-
world applications and the tensions between training and general 
application. While the researchers did not specify the algorithm 
they had in mind, from state of the art research in the feld of ML-
based P300 recognition (e.g., [59]) we can reasonably assume that 
a Support Vector Machine (SVM) was involved. SVMs follow the 
insight-through-opacity approach of ML, as they attempt to form 
‘hyperplanes’ in high-dimensional spaces in order to classify (i.e., 
separate) data [7]. 

receive signal apply pattern

correlate pattern

Support Vector 
Machine

Figure 2: Data uncertainty can lead to pattern leakage of 
P300-labelled phenomena into everyday experience, afect-
ing human-technology relations beyond the original do-
main. Photograph © Wong et al. [79] 

4.2.2 Analysis. It is within an application based on the P300 API 
where we encounter ML uncertainty as a potential design mate-
rial. In this scenario, Wong et al. present the following situation: 
Crowdworkers are employed with Human Intelligence Tasks (HITs) 
of content moderation that is using BCIs. This task does not ne-
cessitate direct human action from the crowdworkers, but builds 
on a technical process which registers crowdworker’s brainwaves 
in relation to potentially harmful images presented on the crowd-
working platform (e.g., Amazon’s Mechanical Turk). In the scenario, 
crowdworkers voice insecurity over these HITs, debating possible 
P300 recognition errors and doubts over the ftness of their cog-
nition to the task. Nevertheless, in order to successfully complete 
their HITs, workers employ drastic measures such as holding open 
their eyelids so as to moderate as much content as possible. At this 
point, we already encounter a complex, two-fold human-technology 
relation: Crowdworkers are frstly wearing their BCI, rely on it pas-
sively to work correctly and, secondly, looking at the HIT interface 
which presents them with content moderation tasks. As such, an 
initial human-technology relation in this scenario may be depicted 
as follows: 

(I - BCI) → (HITInterface - World) 
Embodiment Hermeneutic Relation 

However, this schema does not yet show how the SVM employed 
to detect P300 signals is involved. As the P300 signal model inter-
prets (→) incoming brainwave-data about the world ([]), we may 
schematize this process as follows: 

Signal → [World] 

We may therefore extend the above scenario that integrates 
an embodiment relation (crowdworkers are wearing BCIs) and a 
hermeneutic relation (crowdworkers are observing images for con-
tent moderation on an interface) with a further composite relation: 

(I - BCI / (Signal → [World])) → (HITInterface - World) 
Composite Embodiment Hermeneutic Relation 

Here, ML uncertainty surfaces in Wong et al.’s research as an 
implicit design material. The model for P300 stems from the SVM 
algorithm constructing a hyperplane to separate other signals from 
the P300 pattern. The latter was, as Wong et al. present, learned 
from lab-stimuli in controlled environments. Hence, the data un-
certainty of the P300 pattern recognition pipeline provides another 
dimension to the above concept of pattern leakage. Through data 
uncertainty, the SVM hyperplane may be inclusive of non-P300 
events, and the P300 pattern (i.e., not the ‘actual’ P300 occurrence, 
but it’s model) can thereby ‘leak’. When the trained model is trans-
posed into other domains (e.g., content moderation), overlap be-
tween real-world stimuli in phenomenological experience with data 
uncertainty, then, can lead to P300 patterns leaking into human-
technology relations (cf. Figure 2). For example, we can imagine 
automated fltering of social media newsfeeds based on BCI-driven 
content moderation. This would make the world legible in partic-
ular ways building on the emergence of leaked patterns. These 
could moderate content based on how a particular BCI algorithm 
interprets users cognitive functions. Pattern leakage thus describes 
a phenomenon in Wong et al.’s project, which the researchers have 
considered as an error generative of labor exploitation. In the spirit 
of Wong et al.’s research, of using design fction to unfold the “ba-
nality of more probable outcomes” [79] of emerging technology 
applications, ML uncertainty beyond the notion of error in the form 
of pattern leakage can be engaged explicitly as a design fction 
material. Design fction can probe for a range of ‘real-world’ events 
that due to pattern leakage become associated with a particular ser-
vice or artefact in unplanned, yet generative processes. For example, 
P300 pattern leakage into automated social media fltering can, due 
to emergent networked media efects, become generative of events 
such as novel trends, memes, or socio-material practices that are ir-
reducible to human decision-making, but rather are distinct efects 
of ML data uncertainty in the interpretation of human cognition by 
a specifc algorithm. Design fction research can therefore use this 
concept to attend to non-linear, unplanned yet generative efects 
of future systems. 

4.3 Wakkary et al.’s Morse Things 
4.3.1 Description. Wakkary et al. have developed ‘Morse Things’ 
as a set of computationally enhanced bowls that can function as 
everyday household objects while simultaneously communicating 
among themselves in a human-excluding fashion [72]. Following 
the material speculation methodology, Morse Things are actual 
artefacts that are nonetheless counterfactual to expected ways of 
interaction. They yield a ‘possible world’ in which such artefacts 
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can exist in their own right [71]. Sets of three (from small to large) 
were distributed among households by the researchers, and after 
living with the artefacts for six weeks, a workshop was held in 
which participants shared stories and constructed scenarios for 
future technologies. Wakkary et al. thereby sought to probe how 
thing-centered design methodologies can elucidate design spaces 
for living with things that are not exclusive to human utility. Specif-
ically, the Morse Things do not register their interactions with 
humans, but rather are designed to communicate amongst them-
selves when awake, only sonically emitting Morse code (i.e., short 
and long beeps) into their surroundings: 

“The Morse Things mostly sleep (computationally 
speaking) and wake at random intervals during the 
day at least once every eight hours. Upon waking a 
Morse Thing will send and receive messages to and 
from other Morse Things in its set. The messages sent 
by each Morse Thing are in Morse code and simultane-
ously expressed sonically and broadcasted on Twitter 
[as cryptic encodings].” [72] 

In a subsequent refection on the project, Oogjes et al. outline 
further details of the design process, particularly the use of ML to 
promote a “thing-centered logic”1 in the Morse Things’ decision on 
active periods based on how many other Things were successfully 
communicated with previously [57]. Specifcally, a reinforcement 
learning algorithm was used, taking incoming data to update a plan 
of action over time (cf. [42, 75]). 

4.3.2 Analysis. Through this description we can frst sketch the 
human-technology relation with Morse Things as a background 
relation: 

I (- Morse Things / Home) 
Background Relation 

While human domestic dwellers experience their home through 
their daily routines, Morse Things lurk in the background, doing 
what they do. Morse Things cannot be urged to do what they do, 
nonetheless their activities form a backdrop to the domestic ex-
perience, texturing the dweller’s perceptions of the home, which 
becomes layered with latent technological activity and opaque 
beeping. This background relation was often made explicit by par-
ticipants, who become quite involved with the (real or imagined) 
activity and purpose of the Morse Things. A typical example is how 
one of Wakkary et al.’s participants would “continue to keep trying 
to grab the bowls while they are ‘tweeting’ [. . . ] Maybe I’ll be able 
to tell them apart eventually.” Therefore, a more accurate render-
ing of the human-technology relation in this mode is an alterity, a 
quasi-Other: 

I → Morse Thing ( - Home) 
Alterity Relation 

While the communication among Morse Things is ‘in itself’ 
beyond the horizon of our experience, it clearly is a focus even in 
its opacity, and becomes a feature of the ‘objecthood’ of the Morse 
Thing for Wakkary et al.’s participants, who actively probe the 
opaque communication. This tension constitutes the ‘gap’ between 
things and us that Wakkary et al. fnd to be fruitful as a design 
space for ambiguity and refection. Participants of the study echoed 

1https://doenjaoogjes.com/portfolio/morse-things/, accessed 09/15/2020. 
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Figure 3: The ideal ‘waking-up’ time is predicted by each 
Morse Thing based on the amount of communication dur-
ing prior cycles; with adjustments after every activity. These 
probabilistic ‘futures’ of the Morse Things creep into human 
experience. Photograph © Wakkary et al. [72] 

this sentiment through statements such as “that’s why I like the 
idea of something else, let them be themselves. Other stuf is going 
on that we’re just totally unaware of and it doesn’t matter.” 

For our purposes, the crucial aspect is that while each Morse 
Thing is randomly initiated into ‘waking up’, over time they learn 
from the most ‘successful’ phases of waking by logging the times 
when communication with many other Morse Things occurred, 
and predicting the optimal ‘timeslot’ for waking using ML [57]. 
Through reinforcement learning algorithms, each artefact updates 
an internal model based on the prior ‘success’ of its actions in 
the overall environment of other Morse Things’ activity (Figure 3). 
With the constantly updating model of an opportune timeslot, ML 
uncertainty becomes a particularly rich resource that allows for 
potentially broadening the design research inquiry. First, we can 
schematize the timeslot model as a machine interpretation of how 
other Morse Things have previously acted in the world: 

Timeslot → Morse Things 

The model for a timeslot is based on a prediction of Morse Things 
waking and communication at a specifc time, relating to all Morse 
Things’ specifc interpretation of the ‘world’ as represented by all 
Morse Things’ activity. Next, we can use this schema to more pre-
cisely outline how ML fgures in the previously presented human-
MorseThings relations: 

I(- Morse Things / (Timeslot → Morse Things) / Home) 
Composite Background Relation 

I → Morse Thing / (Timeslot → Morse Things)(- Home) 
Composite Alterity Relation 

Our denotation allows us to characterize how ML processes af-
fect the given human-technology relation: it is explicitly related 
to time. Each Morse Thing learns about ‘ideal’ times individually, 
with the overall assumption that learning will converge in specifc 

https://doenjaoogjes.com/portfolio/morse-things/
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times across all Morse Things. This constant attempt towards con-
vergence invariably afects situated human-technology relations: 
participants wonder when a Morse Thing will act, and this textures 
not only the spatial surroundings of a home but also its temporal 
characteristics. Considering model uncertainty in this scenario, we 
term the phenomenon of Morse Things’ involvement in human 
experience of time as a futures creep: the impact of predictions 
on situated human experience. Put diferently, ML uncertainty al-
lows us to explicitly denote how the thingly model of time impacts 
participants’ experience of Morse Things. There is not a singular 
prediction, but multiple entangled predictions of varying degrees 
of probability. Various models of a timeslot coalesce around the 
human experience of beeps and tweets; ‘thingly futurings’ that 
characterize and at the same time are irreducible to human-artefact 
interaction. Expanding on this design space could, for instance, see 
an expansion of the “animistic” [48] tendencies of Morse Things 
into even more individualistic thingly futurings. For example, by 
designing diferent confdence thresholds for a Morse Thing to de-
cide on a timeslot, or by representing uncertainty in modulating 
the frequency of beeps based on uncertainty. Futures creep, then, 
could be used to characterize a thingly uncertainty of actual arte-
facts, further interrogating questions such as: How could material 
speculation artefacts be more explicitly designed around notions of 
time and uncertainty? For example, investigating how ML-driven 
products or services mediate relations to time in specifc settings, 
design researchers could purposely pursue material speculation on 
intermediary, ‘time-keeping’ artefacts for futures creep. 

4.4 Biggs and Desjardins’s Highwater Pants 
4.4.1 Description. In their speculative design project, Biggs and 
Desjardins design and deploy the artefact ‘Highwater Pants’—a 
pair of pants whose legs lengthen or shorten based on whether the 
wearer is in an area threatened by predicted sea-level rise in the 
future [5]. The researchers mobilize speculative design to probe hu-
man relations to possible futures of climate change, and argue that 
the Highwater Pants make such futures tangible as they “bend time.” 
The artefact was deployed with cyclists, as these have “embodied 
and sensorial” knowledge about their environment and specifc 
garments are part of the cycling culture. The Highwater Pants are 
equipped with a fabric micro-controlling unit, which combines a 
variety of operations. First, it controls actuation of the pant legs 
into an up or down state. Second, it houses a GPS module which 
retrieves the current geographical position of the wearer. Third, it 
compares the position to a set of polygons on a map, which have 
been curated by the researchers. Within the polygons, sea-level rise 
in “30 to 50 years” was predicted using ML linear regression algo-
rithms by the National Oceanic and Atmospheric Admistration (cf. 
[65]). Such algorithms extrapolate tendencies for values to increase 
linearly based on previous data (cf. [9]); in this case, decades worth 
of temperature and longitude/latitude data. 

4.4.2 Analysis. Riding a bike is, classically, an embodiment relation. 
As we navigate the world, the bike itself withdraws, becoming 
part of our extended bodily relationship to our environment. The 
Highwater Pants, initially, also withdraw into this relation: 

(I - HighwaterPants - Bike)World 
Embodiment Relation 

Based on our prior analyses, the prediction model of the linear 
regression algorithms can be schematized as an interpretation of 
an already thematized ‘slice’ of the world: 

Prediction → [World] 

As Biggs and Desjardins were mindful of the uncertainty of ML 
predictions, they “padded” their polygons so as to increase the 
zones of prediction and to give participants more opportunities 
for refection. When comparing the wearer’s GPS location with 
the “geofencing” of the polygons, the Highwater Pants pants leg is 
rolled up or down. Both the Highwater Pants and the bike remain 
intimately tied to bodily-perceptual experience, but the embodied 
perception of the environment is textured by likely future states 
of the same environment. Biggs and Desjardins’ empirical fndings 
from deploying pairs of Highwater Pants with experienced local 
cyclists refect this intimately. For instance, one participant muses 
on how “it’d be a totally diferent experience living here without 
[the waterfront parks]” after the Highwater Pants indicated that 
these may disappear. Based on the schemata so far used, we may 
note the entangling of an embodiment relation (with the bike and 
the Highwater Pants) with a probabilistic prediction of future sea-
levels (i.e., a prediction of an already ‘thematized’ world) as follows: 

(I - HighwaterPants / (Prediction → [World]) - Bike) World 
Composite Embodiment Relation 

Linear Regression

correlate GPS to dataset

adjust to prediction

Figure 4: The Highwater Pants correlates the GPS location 
of the wearer with the dataset for sealevel-rise prediction, 
and adapts its activity to the relevant prediction. The futures 
creep mediated by the Highwater Pants afects how bikers 
relate to possible future states of their environment. Photo-
graph © Ioan Butiu / Biggs and Desjardins [5] 

Initially, the above denotation resurfaces the phenomenon of pat-
tern leakage which we discussed with regards to smart cameras and 
BCIs above: both training data and predicted data are intrinsically 
uncertain, and the patterns of likely sea-level rise are projected 
onto the ‘real’ world. However, the researchers’ empirical fndings 
also suggest a further nuance to the Highwater Pants: participants 



CHI ’21, May 8–13, 2021, Yokohama, Japan Benjamin, et al. 

actively tried to fnd the boundaries of polygons in order to discover 
where predictions lose their “time-bending” hold on the present. 
In their experience, participants noted how the Highwater Pants 
would be “oscillating between up and down at geofence boundaries, 
creating a kind of anticipatory sensation in a liminal zone.” There-
fore, the initial relation to the prediction model becomes more overt 
in the form of an alterity relation: 

(I - Bike) → HighwaterPants / (Prediction → [World]) (World) 
Composite Embodiment Alterity Relation 

This complex multi-relationality of human-HighwaterPants in-
teraction shows how the predicted post-sea-level rise world is 
probed via the Highwater Pants against the backdrop of one’s own 
bodily-perceptual relations with the environment, while simulta-
neously being part of the human-bike embodiment relation. The 
Highwater Pants as a quasi-Other becomes, in the words of Biggs 
and Desjardins, an intermediary “oracle, or translator, speaking 
for/from an ecology-to-be,” which directly afected participant’s im-
mediate bodily perception of their own future. This adds a further 
variant to our concept of futures creep: the ecology-to-be is not 
only an ‘image’ of the future. Rather, the “future present” [11] of 
inferred models, fuctuating with the data uncertainty of past mea-
surements, becomes an implication of human perception and action 
in that future. The time-bending phenomenon which Biggs and 
Desjardins explicate is thus not a technological operation triggering 
a human response (as had been the case with the Morse Things’ 
futures creep), but rather the injection of prediction into the human 
phenomenological experience of time (cf. Figure 4). The way par-
ticipants’ think of the future is co-shaped by the Highwater Pants’ 
mediation of a prediction, and takes on a particular shape as a po-
tentially endangered lifeworld–additionally refecting questions on 
whether my present is the one leading up to the realization of this 
prediction. The uncertainty of this prediction has a direct efect on 
how someone imagines relations between their present and future, 
and their capacity in shaping this specifc, technologically thema-
tized time. This aspect of futures creep, then, can be used by design 
researchers to further investigate how design artefacts shape and 
transform relations between present and future. As futures creep 
is a phenomenon of ML uncertainty, design researchers can also 
question: What kind of positionality towards such temporal shapes 
does the variance of model and data uncertainty provoke, for whom, 
and towards which ends? Design research methodologies such as 
speculative design or RtD can use this facet of futures creep for 
an inquiry into the specifcs of time-bending by artefacts, for ex-
ample investigating how model uncertainty could be deliberately 
calibrated by users to explore non-anthropocentric notions of time. 

5 DISCUSSION 
Through our analyses, we derived three provocative concepts for 
ML uncertainty: thingly uncertainty, pattern leakage and futures 
creep. We summarize and defne these for future research below. 
While we have separated out case studies into the phenomena we 
tried to make referable, it should be noted that they are not mutually 
exclusive and simply ofer lenses that bend toward the specifc 
phenomena generated by ML models. Furthermore, our analyses 
have also surfaced potential research trajectories for more general 
post-phenomenological ML studies, which we address separately. 

5.1 Three Provocative Concepts for Designing 
with ML Uncertainty 

Data and model uncertainty are intrinsic and defning properties of 
ML. From an engineering or XAI perspective, uncertainty may be 
seen as a phenomenon to be curbed or explained to frame outputs 
more unambiguously. But, as we have argued, ML uncertainty is 
also a promising design research material: as an inherent attribute 
of contemporary ML, data and model uncertainty speak to the 
material involvement of ML decision-making with the world. In 
what follows, we take a further modest step forward and articulate 
working defnitions of our concepts as provocative shorthands for 
future design research to productively engage with ML uncertainty 
as a design material. We conclude this section by summarizing their 
utility for design, and connecting our concepts to the emerging 
discourse of more-than-human design in HCI. 

5.1.1 Thingly Uncertainty. With thingly uncertainty, design re-
searchers can go beyond human uncertainty about an artefact and 
engage how the uncertainty of an artefact can become generative 
of specifc, technologically mediated phenomena in the world. As a 
general concept, we posit that this a particularly powerful short-
hand for ML-enabled artefacts. Again, uncertainty in this regard is 
not a negative attribute, but simply part-and-parcel of the use of 
probabilistic techniques in ML. Ihde and Verbeek have previously 
elaborated on a “thingly” [34] or “material hermeneutics” [33, 67]: 
technological artefacts, through their material properties (e.g., afor-
dances, representations, sensors, actuators), shape how the world 
becomes legible in specifc ways. Thingly uncertainty, however, at-
tributes more precisely the kind of agency that ML-driven artefacts 
exhibit. Rather than fxed, “scripted” (e.g., [1]) readings, ML-driven 
artefacts can be much looser and uncertain about the legibility of the 
world. As such they act and adapt within a continuum of relations to 
their environment and the humans that experience them. Thingly 
uncertainty can help design researchers to more directly explicate 
the variance of both ML and human, and point to non-normative 
ways of how the human sees and is seen in human-ML relations: 
How do the entities, assets and attributes that defne humans shift 
across types (i.e., data and model) and amplitudes (e.g., low or high 
thresholds) of ML uncertainty? What could a speculative set of 
norms based on such ML-mediated variances look like? 

For example, Wong et al.’s proposal of “infrastructural specula-
tions” [78] can be extended through thingly uncertainty. Consid-
ering speculative design and design fction, Wong et al. propose 
this concept to more closely defne the role of ‘actual’ infrastruc-
tures, like the socio-cultural, economic or operational micro- and 
macro-infrastructures, that need to be in place for an artefact to 
exist. Often, such infrastructures will involve ML or advanced AI 
capacities, and thingly uncertainty ofers a means to consider the 
quantitative and qualitative particularities at the ‘joints’ of infras-
tructural speculations. On the one hand, researchers can investigate 
how thingly uncertainty will have to be explained, minimized or ig-
nored for the object of research (e.g., a speculative scenario, practice, 
artefact) to exist. On the other hand, infrastructural speculations 
also gain a concrete technological dimension of variance within 
lifeworlds: Where, for instance, can pattern leakage or futures creep 
occur? Who or what needs to perform care, or is afected by, these 
computational phenomena? Thingly uncertainty can thereby ofer 
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a basis to consider actual phenomena generated and mediated by 
ML for design research. 

5.1.2 Patern Leakage. This concept describes how ML uncertainty 
afects the ways in which objects, entities, events and people are 
recognized in ML-driven systems; noting the propensity of proba-
bilistic patterns to shape the world they are deployed to represent. 
Through our case studies, we found instances of pattern leakage 
related both to data and model uncertainty. Design research can 
appropriate this concept to probe both types of ML uncertainty in 
the following ways. 

When investigating Wong et al.’s When BCIs have APIs, we pro-
posed that pattern leakage names how phenomenological expe-
rience becomes afected by data uncertainty. Brainwave signals 
become registered as P300 instances, yet due to data uncertainty 
it is likely that the world becomes populated with ‘surplus’ P300 
instances. Future design research could therefore pay attention to 
how data uncertainty leads to a data-driven ‘inclusivity’ of classi-
fcations or predictions that due to intent, oversight, subtlety or 
opaqueness bleed into specifc socio-material constellations. Fo-
cussing on pattern leakage due to data uncertainty, design research 
can more precisely refect on the thresholds for participation in 
ML-driven data ecologies. For instance, design fction could use 
this concept to avoid assumed linearities in future technological 
settings, paying close attention to how ‘slippage’ in classifcation or 
prediction can not only lead to breakdowns, but rather be generative 
in its own right. 

In analyzing Pierce’s Shifting Lines of Creepiness, we noted that 
smart cameras, through model uncertainty, may actively generate 
phenomena rather than passively register them. Learned patterns 
(e.g., a person in a restricted area) may leak onto events in the wild 
(e.g., a movie poster), and afect how things and humans see the 
world. We propose that future design research take on this concept 
to investigate how the intentionality of diverse ML algorithms (e.g., 
artifcial neural networks, SVMs) to read the world in a specifc 
way is generative of distinct patterns leaking into situated human-
technology relations. For example, an ML-driven IoT artefact could 
have various options for its algorithmic functionality. Researchers 
may actively provoke and design for patterns to leak under difer-
ent algorithmic choices. Deploying various artefacts, investigations 
can then begin into whether and how distinct pattern leakage phe-
nomena diferentially afect, or become generative of unanticipated, 
human-technology relations with the ML-driven artefact. 

5.1.3 Futures Creep. Futures creep denotes how ML-driven arte-
facts afect human relations to time through probabilistic, uncertain 
predictions. The impact of technologies on human conceptions of 
time is a complex issue of investigation, particularly when consider-
ing situated manifestations of meta-concepts such as the “ontologies 
of times” of specifc eras (cf., [47]). However, as ML is fundamentally 
a technological approach to making predictions (e.g., of classifca-
tion, recognition, translation) about data, the concept of futures 
creep provides an opening into this more subtle side of ML for 
design research. 

With regards to model uncertainty, in our analysis of Wakkary 
et al.’s Morse Things we found that futures creep in ML-driven 
artefacts denotes a specifc, human-excluding side: when such arte-
facts do what they do may be not directly correlated with human 

experience, yet that is precisely how the artefacts are humanly 
interpreted to have a specifc character. In line with Marenko and 
van Allen’s proposal for “animistic design” [48] research, this facet 
of futures creep can be used to inquire into how diferent kinds of 
data uncertainty thresholds for ML-driven artefacts mediate the 
characteristics that humans attribute to them. For instance, arte-
facts could be purposely designed to exhibit animistic tendencies 
by allowing for higher variance in data uncertainty for activity, and 
researchers may investigate whether such technological decisions 
translate into mediations of particular artefactual ‘characters.’ 

Model and data uncertainty combined showed a yet more subtle 
facet of futures creep in Biggs and Desjardins’ Highwater Pants: the 
prediction of future sea-level rise was mediated by their speculative 
design artefact in such a way that it afected participant relations to 
the present and possible futures, with participants actively probing 
the range of predictions. The futures creep related to time-bending, 
i.e. directly afecting the shape of present and future, can be used to 
actively interrogate how and whether distinct ML algorithms and 
respective forms of model uncertainty generate specifc relations 
to ‘temporal shapes.’ Specifcally, futures creep may be used in 
“attending to temporal representations” [38] in design fction. For 
example, researchers may interrogate whether a higher degree 
in variance concerning ML-driven predictions may bring about 
novel political or civic norms in speculative scenarios, e.g. people 
choosing to be in loose, variable relations to the future. 

Our provocative concepts can serve as a novel conceptual vocab-
ulary to build design artifacts that provocatively engage with ML 
uncertainty; which allows for in-depth investigations of human-ML 
relations throughout the design process. Designing for thingly un-
certainty with futures creep and pattern leakage can shed light on 
how human subjectivities become entangled with ML-driven arte-
facts. This is not only a symbolic or aesthetic exercise, but rather a 
potentially powerful way of investigating how standard thinking on 
human-ML relations rely on normative assumptions (e.g., anthro-
pocentric, capitalist, hetero-normative) about the technological as 
much as the human side of those relations. In this light, and echoing 
recent calls for more-than-human design (cf., [13, 17, 46, 48, 55]), 
we propose that our concepts are readymade for research that takes 
seriously the role of non-human entities within design processes 
and products. 

5.2 Refning ML-driven Technological 
Mediation: Horizonal Relations 

Post-phenomenology’s strengths lie in its “methodological post-
humanism” [64], in interrogating how technological mediation 
afects how humans perceive and act in the world. However, ML’s 
thingly uncertainty (i.e. agential capacities for perception, predic-
tion and adaptation) and technical opacity seem to require further 
in-depth consideration. In our inquiry, the human-technology rela-
tion schemata grew ever more complicated and convoluted as we in-
vestigated the relationship of model-world and human-technology 
relations in our case studies; and the phenomenological diference 
between present artefacts and absent ML technologies was not 
entirely resolved. Specifcally, we can see this in the use of the 
backslash (/) to indicate both the background of experience as well 
as the workings of ML in the background of an experienced artefact. 
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Whereas post-phenomenology is mostly focused on technological 
mediation in the here and now of the phenomenological horizon, 
the presented phenomena of ML uncertainty trouble this selective 
focus. As ML algorithms infer models from data representations of 
the world, they ‘populate’ the world that humans experience with 
ready-made yet ultimately uncertain entities (e.g., music recommen-
dations, likely trafc jams, people to follow, coasts to disappear). 
And as everyday phenomenological experience becomes textured 
by probabilistic models, our capacities for perceiving and acting 
in such ‘probable’ worlds are shaped accordingly. Thus, while we 
may not be aware of ML models’ involvement in technological 
mediation, our ways of relating to the world nonetheless become 
“imbricated” [23] (i.e., overlapping and co-extensive) with ML tech-
nologies. Accordingly, ‘our’ phenomenological horizon, the matters 
and modes of perceiving, acting and sense-making, is textured by 
ML’s thingly uncertainty. Investigating such horizonal relations can 
become a promising trajectory for post-phenomenological ML stud-
ies, which we briefy sketch as follows. Our preliminary schema 
mirrors Goodfellow et al.’s use of the tilde operator (~) for ML 
inference [18]: 

∼ 
I −→ ( Technology - [World] ) 

ML ~ World 
Horizonal Relations 

Similar to background relations, horizonal relations recede from 
a specifc interface or device that intentional human-technology re-
lations are formed with (e.g., in a hermeneutic relation). And similar 
to composite relations, horizonal relations feature technologically-
exclusive interpretations of the world. But more than that, in hori-
zonal relations, human-technology relations are embedded within 
ML technologies’ specifc capacity of being uncertain about the 
world. Here, model-world relations infer a model (~) from the world-
as-data ([]), which ‘converges’ with a particular human-technology 
relation. For example, the Facebook newsfeed algorithm is not only 
an operation on graph data, but implies a specifc human way of 
relating to particular arrangements of data patterns. The hermeneu-
tic relation that I take up with the Facebook newsfeed interface 
is therefore ‘textured’ by the uncertainties in predicting that data 
pattern. Horizonal relations may therefore be characterized as a 
human-technology vector associated with a given ML model, point-
ing towards a specifcally ‘thematized-by-data’ world. The ways in 
which model and data uncertainties of such relational ‘pointing’ 
manifest (as e.g. pattern leakage and/or futures creep) in what we 
perceive, then, are the fundamental concerns of studying horizonal 
relations. Further investigations involving diverse ML implemen-
tations, can use the preliminary schema and concepts we have 
developed to investigate the established human-technology rela-
tions (e.g., Table 1); refning our schema and deriving associated 
phenomena. 

5.3 Limitations of the Inquiry 
With this paper, we aimed to make ML more tangible for design 
research through a post-phenomenological perspective on ML un-
certainty. Our analyses have generated concepts to be used by 
researchers, yet there are important areas of research that we have 
not touched upon. A challenge to consider is how designing with 
ML uncertainty may become an ethico-politically refective practice 

beyond a possibly detached aestheticization of ‘glitchy’ ML tech-
nologies. Verbeek stresses that post-phenomenology is particularly 
suited to the anticipation of ethical issues. Future work deploying 
our developed concepts should therefore be especially attentive to 
how ML uncertainty may play a role in the “hybrid moral agency” 
[66] constituted in the relationships of technology and people. 

6 CONCLUSION 
In this paper, we took a post-phenomenological lens to investigate 
design research projects for phenomena related to ML uncertainty. 
From our analyses, we generated three main procovative concepts. 
Thingly uncertainty denotes a general characteristic of ML-driven 
artefacts: the capacity for relating to the world along a variable 
continuum. Pattern leakage describes the propensity for the learned 
patterns of ML models to be projected into the world. Futures creep 
names the mediation of particular relations to the present and fu-
ture of ML-driven artefacts. All concepts ofer distinct opportunities 
for design research to engage ML-driven technological mediation. 
We argue that these concepts ofer a promising foothold for design 
research of ML technologies, which has been a difculty for the 
feld. Additionally, we noted that the concepts derived from our 
case studies can also feed back into post-phenomenological ML 
studies, adding a more precise description of how human inten-
tionality co-extends and overlaps with ML capacities in the form 
of horizonal relations. As such, we ofer a modest step forward for 
design research and post-phenomenology to engage with ML. 
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